Instructions: This is page 1 of your exam. There are further instructions on the back.

1. I used Desmos to draw the graph of f(x) and a tangent line to f.

(a) Linearly approximate f(.97). (Make it clear what a and h are.)

(b) Using the Newton-Raphson method with $c_0 = 1$, find c_1 . [5 pts]

[10 pts]

(c) Draw, directly on the graph above, the line that would allow you to find c_2 . [5 pts] (The slope doesn't have to be perfect. c_2 is actually quite close.)

Further instructions: No calculators (duh). You'll always be graded on the work you show. Do problem k on page k and write your name and your discussion leader's name on each page. Problem values are marked. I strongly recommend not working in order, but I'm not the one taking the exam. The time for the test is 50 minutes; you can hand it in and leave whenever, but it is never a sign of weakness to use all the time that you have.

2. (a) Take the derivatives of the following functions. Please do not simplify.

i.
$$a(x) = 2^x - e^2$$
 [4 pts]
ii. $b(x) = \sin^3(4x)$ [4 pts]

[8 pts]

[4 pts]

(b) Let c(x) = f(q(x)) and $d(x) = e^{f(x)}$, where

x	f(x)	f'(x)	g(x)	g'(x)
1	5	11	2	7
2	3	8	4	5
7	-2	-1	-3	-4

Find c'(1) and d'(1).

.

3. Define a curve implicitly by the equation

$$\sin\left(x-y\right) = \sin\left(xy\right).$$

- (a) Verify that $(\pi, 0)$ is on the curve.
- (b) Find the equation of the tangent line to the curve at the point $(\pi, 0)$. [12 pts] (Note that I did *not* ask you to solve for dy/dx in general.)
- 4. Prove that $h(t) = \sin(t)\cos(t)$ is a solution to the differential equation h'' = -kh for [16 pts] some positive number k. What is k?
- 5. Using the facts that $e^{-0} = 1$ and $y = e^{-x}$ satisfies the differential equation y' = -y, [16 pts] use two-step Euler's method to approximate e^{-1} . (Note: e^{-1} is between 0 and 1.)
- 6. A 5-foot ladder slides away from a wall at 2 feet per second. How fast is the top of the [16 pts] ladder sliding down the wall when the bottom of the ladder is 4 feet from the wall?