March 10, 2017
Circle one: Arijit Ke(Kent) Mark Priyankur Sam MATH 140 Exam 2

Instructions: This is page 1 of your exam. There are further instructions on the back.

1. I used Desmos to draw the graph of $f(x)$ and a tangent line to f.

(a) Linearly approximate $f(.97)$. (Make it clear what a and h are.)
(b) Using the Newton-Raphson method with $c_{0}=1$, find c_{1}.
(c) Draw, directly on the graph above, the line that would allow you to find c_{2}. (The slope doesn't have to be perfect. c_{2} is actually quite close.)

Further instructions: No calculators (duh). You'll always be graded on the work you show. Do problem k on page k and write your name and your discussion leader's name on each page. Problem values are marked. I strongly recommend not working in order, but I'm not the one taking the exam. The time for the test is 50 minutes; you can hand it in and leave whenever, but it is never a sign of weakness to use all the time that you have.
2. (a) Take the derivatives of the following functions. Please do not simplify.

$$
\text { i. } a(x)=2^{x}-e^{2}
$$

ii. $b(x)=\sin ^{3}(4 x)$
(b) Let $c(x)=f(g(x))$ and $d(x)=e^{f(x)}$, where

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	5	11	2	7
2	3	8	4	5
7	-2	-1	-3	-4

Find $c^{\prime}(1)$ and $d^{\prime}(1)$.
3. Define a curve implicitly by the equation

$$
\sin (x-y)=\sin (x y)
$$

(a) Verify that $(\pi, 0)$ is on the curve.
(b) Find the equation of the tangent line to the curve at the point $(\pi, 0)$.
(Note that I did not ask you to solve for $d y / d x$ in general.)
4. Prove that $h(t)=\sin (t) \cos (t)$ is a solution to the differential equation $h^{\prime \prime}=-k h$ for $\quad[16 \mathrm{pts}]$ some positive number k. What is k ?
5. Using the facts that $e^{-0}=1$ and $y=e^{-x}$ satisfies the differential equation $y^{\prime}=-y, \quad[16 \mathrm{pts}]$ use two-step Euler's method to approximate e^{-1}. (Note: e^{-1} is between 0 and 1.)
6. A 5 -foot ladder slides away from a wall at 2 feet per second. How fast is the top of the $[16 \mathrm{pts}]$ ladder sliding down the wall when the bottom of the ladder is 4 feet from the wall?

