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Definition

Two topological spaces are homeomorphic if there exists a
continuous invertible function between them. This mapping is
called a homeomorphism.

This extends the notion of continuity in Calculus.

If two spaces are different, we would need to check all the
functions to verify they are different. That could take a while.

Definition

We call a property topological if it is preserved under
homeomorphism.

If two spaces have different topological properties, then they
aren’t homeomorphic.
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Let’s give an example:

Definition

The dictionary order for two partially ordered sets A× B is
defined as:
(a, b) ≤ (a′, b′)⇔ a < a′ or (a = a′ and b ≤ b′)

[0,∞) is homeomorphic to Y := N× [0, 1) in dictionary order
Namely, our homeomorphism is f : Y 7→ R : (x , y) 7→ x + y
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Definition

A space is Hausdorff if any two distinct points have distinct
neighborhoods.

Let’s tweak our previous topology.

Example

A := N× [0, 1] in dictionary order
Every (x,1) isn’t topologically distinguishable from (x+1,0)
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Definition

A space is discrete if all subsets are open(and thus also closed).
Intuitively, this means that every point has a neighborhood
around it that contains no other points.

R isn’t discrete, because between any two real numbers there
are more real numbers.
We’ve tried A := N× [0, 1) in dictionary order.
Now let’s try the opposite. B := [0, 1)× N in dictionary order.
I believe we referred to this as “blowing up the R”
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Definition

A space is path-connected if there is a continuous finite path
between any two points.

R is path-connected, as between any two points there exists a
line connecting them. But what about a dictionary ordered unit
square? E := [0, 1]× [0, 1] on the dictionary order.
I call it an infinitesimal harp.
If we remove a point from R, it’s no longer path connected. By
contrast, for a normal unit square, [0, 1]× [0, 1], if we were to
remove a point, we would still be path connected.
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Definition

A space is contractible if it is deformable to a point in finite
time.

R is contractible , as ∀n ∈ N (n,n+1) is homeomorphic to
(0, 1

2n+1 ), by the map f (x) = x−n
2n+1 , which is homeomorphic to

( 2n

2n+1 ,
1+2n

2n+1 )

Now that we’ve gotten to [0,1), we can divide ∀n ∈ N
But what if for N× [0, 1) we used a bigger set than N?
What if we used ω1?
Our ray would be a lot longer.
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So what are we to learn?
R is a little special.

It’s Hausdorff, but not discrete.

It’s path-connected, but barely.

And it’s infinitely long, but not too long.
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